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In order to achieve the highest intensities possible with the short-pulse

Advanced Radiographic Capability beamline at the National Ignition Facility

(NIF), it will be necessary to phase the individual ARC apertures. This is made

especially challenging because the design of ARC results in two laser beams

with different dispersions sharing the same NIF aperture. The extent to which

two beams with different dispersions can be phased with each other has been

an open question. This paper presents results of an analysis that show that

the different dispersion values that will be encountered by the shared-aperture

beams will not preclude the phasing of the two beams. We also highlight a

situation in which dispersion mismatch will prevent good phasing between

aperture, and discuss the limits to which higher-order dispersion values may

differ before the beams begin to de-phase. c⃝ 2010 Optical Society of America

OCIS codes: 050.0050, 030.1640, 140.3290, 140.3298, 140.7090.

1. Introduction

In order to maximize energy output of a laser system and avoid material damage thresholds

and nonlinear propagation effects, it has become common to combine multiple laser outputs

in a single aperture [1]- [4]. This can be done either through coherent beam combining, in

which all the individual elements operate at the same wavelength, or through wavelength

beam combining in which each element operates at a distinct wavelength. In coherent beam

combining the relative phase between separate beams must be controlled. While this is

challenging for single-wavelength laser systems, it becomes even more challenging when one

wishes to coherently combine two short-pulse laser beams with a few nanometers of spectral

bandwidth, each of which has a different dispersion. This paper addresses this particular issue
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and how it might affect future experiments that will make use of the Advanced Radiographic

Capability (ARC) beamlines at the National Ignition Facility (NIF).

The ARC is one of the many diagnostics being built to support the National Ignition

Campaign (NIC) on the NIF [5] and will provide the short-pulse (1-50ps) capability on NIF.

Its primary purpose is to provide a sufficient number of energetic x-rays in the range of

10-100 kEV for back-lighting NIF targets [6]- [9]. The ARC system uses four of the 192

NIF beamlines, and each ARC aperture will operate in a split-beam architecture. This split-

beam design is necessitated by both the space restrictions placed on the ARC footprint by

the NIF facility and by the fact that the current state-of-the-art diffraction gratings are

limited in size to ∼ 1m square. In order to avoid cross-talk between neighboring gratings

in the compressor, the two beams which share the same ARC aperture experience different

dispersions through the laser system [10]. The near-field profile of the NIF-ARC quad is

shown in Fig. 1. The individual apertures are rotated because of the spherical geometry of

the NIF target chamber. For the purpose of NIC diagnostics, each of the eight ARC beams

will be pointed at different targets and staggered in time. This will allow for the generation

of an eight-frame back-lit movie of the target capsule implosion.

Simultaneously firing the full ARC quad will give the highest peak intensities on target and

will enable many high-energy-density (HED) experiments at the NIF. In order to maximize

the laser intensity on target it is desirable that all eight ARC beams be phased with each

other. Two other short-pulse, high-energy laser systems, the OMEGA EP Laser System at

the Laboratory for Laser Energetics [11] and the Petawatt Aquitaine Laser (PETAL) [12]

plan to phase multiple gratings to achieve a large-aperture compressor and a correspondingly

tighter focal spot and higher on-target intensity than could be done with a single-grating-

sized aperture. This option, however, is not available for the ARC beamline because of the

restrictions discussed above. Phasing of the ARC beams requires overcoming many different

obstacles that other systems do not always face: the individual beams must be pointed

accurately and must have minimal residual spatial phase, and to achieve temporal phasing

the path difference between the beams through the NIF laser must be measured to within

a fraction of a wavelength, modulo 2π. One system has been proposed to achieve all these

goals for a single NIF aperture [13]. However, this still leaves open the question of whether

the two halves of a single aperture can be phased with each other if they experience different

dispersions through the laser system. This paper seeks to address this last concern.

2. Analysis

Because we care about how two beams of different dispersions coherently add, we must do

the calculations with reference to the electric field and not the intensity, which is a time-

averaged quantity. The electric field in time may be expressed as the real part of the Fourier
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transform of the electric field in frequency space,

E(t) = ℜ
[
F−1 [E (ω)]

]
= ℜ

[∫ ∞

−∞
E (ω) exp (iωt) dω

]
(1)

where the underbar (e.g E) indicates a complex quantity. The electric field can be decom-

posed into a real amplitude and complex phase term

E(ω) = A(ω) exp[iϕ(ω)]. (2)

For a Gaussian spectral amplitude

A (ω) = exp

[
1

2

(
ω − ω0

∆ω

)2
]

(3)

where ∆ω is the 1/e width of the spectral intensity.

The spectral phase ϕ(ω) is typically expanded in a Taylor series about the central frequency

ω0 and expressed as [14]

ϕ(ω) = ϕ(ω0) + ϕ
′
(ω0)(ω − ω0) +

1

2
ϕ′′(ω0)(ω − ω0)

2 +
1

6
ϕ′′′(ω0)(ω − ω0)

3 . . . (4)

where ϕ
′
indicates a derivative with respect to ω. There is no analytic solution to the integral

in Eq. 1 with a phase function given by Eq. 4 so, in general, numerical techniques must be

used to calculate E(t). We substitute Ω ≡ ω−ω0 into Eqs. 1 and 4 which allows us to factor

out the rapidly varying component and results gives us∫ ∞

−∞
E (ω) exp (iωt) dω = exp(iω0t)

∫ ∞

−∞
A (Ω) exp[iϕ(Ω)] exp(iΩt)dΩ

= exp(iω0t)F
−1 [E (Ω)] (5)

where

E(Ω) ≡ A(Ω) exp[iϕ(Ω)]. (6)

Because the high-frequency oscillations are contained entirely in this factored term, this

step will allow us to take a discrete Fourier transform (DFT) of the electric field without

excessively fine spectral sampling. This equation allows us to calculate the temporal phase

imparted to an individual pulse from a given stretcher/compressor configuration using ex-

pressions like those found in Ref. [14].

We can now look at the combined electric field from two beams with different dispersions,

which we will refer to as beams A and B:

F−1{EA(Ω)} ≡ EA(t) = |EA(t)| exp[iϕA(t)] (7a)

F−1{EB(Ω)} ≡ EB(t) = |EB(t)| exp[iϕB(t)] (7b)
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Using Eqs. 1, 5, and 7 and factoring back in the rapidly varying component, the electric field

in time becomes

E(t) = ℜ{exp[iω0t] ·
[
F−1{EA(Ω)}+ F−1{EB(Ω)}

]
}

E(t) = ℜ{|EA(t)| exp[iϕA(t) + iω0t] + |EB(t)| exp[iϕB(t) + iω0t]} (8)

and the intensity of the combined beam is

I(t) ∼ ⟨E(t)⟩2 = 1

2
E(t) · E(t)∗ (9)

where E(t) is the complex expression within the R{. . .} in Eq. 8 and ⟨. . .⟩ indicates the

average over time [16]. Notice that at this stage Eq. 8 is an exact expression for the electric

field in time for the combined beams and that EA(t) and EB(t) can be calculated numericallyto

any desired precision using Eq. 7 with a DFT.

We can express |EB(t)| = |EA(t)|+ δ(t) and then rewrite Eq. 8 as

E(t) = |EA(t)|ℜ{exp(i[ϕA(t) + ω0t]) +

(
1 +

δ(t)

|EA|

)
exp(i[ϕB(t) + ω0t])} (10)

If δ(t)/|EA| ≪ 1 (i.e. the amplitudes of the two fields are approximately equal and the pulses

are of approximately the same width) we can drop the contribution of this term to Eq. 10.

In this limit

E(t) ≈ |EA(t)|ℜ{exp(i[ϕA(t) + ω0t]) + exp(i[ϕB(t) + ω0t])}
= |EA(t)|{cos[ϕA(t) + ω0t] + cos[ϕB(t) + ω0t]}

= 2|EA(t)| cos
[
ϕA(t)

2
− ϕB(t)

2

]
cos

[
ϕA(t)

2
+

ϕB(t)

2
+ ω0t

]
(11)

The slowly varying envelope that describes the temporal beating between beams A and B

is contained in the first cosine term, and the rapidly varying part of the electric field is

contained in the second cosine term. Thus, in the approximation that |EB(t)| ≈ |EA(t)| we
can see there will be destructive interference when cos[ϕA(t)/2− ϕB(t)/2] = 0, or when

ϕA(t)− ϕB(t) = (1± 2m)π, m = 0, 1, 2 . . . (12)

See the appendix for a discussion of the finer points of calculating the phase using a DFT.

In the ARC geometry, the A and B beams will not be collinear, but side-by-side. So the

effect of de-phasing between the two halves will cause those parts of the beam that are out of

phase to have a larger focal spot than the parts of the beam that are in phase. This effect is

shown in Fig. 2. Figure 2(a) shows the ideal near-field image of a single ARC aperture, and

(b)-(d) shows the effect of de-phasing on the far-field spot. The accumulated fluence in the

far-field from a split-aperture beam will be a weighted sum of these types of far-field spots.
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Let us now turn our attention back to the expression for the spectral phase ϕ(ω) in Eq. 4.

The ϕ(ω0) term is simply a constant piston and, for our purposes, we can assume the A and

B beams have the same piston. If A and B come from two different front-end laser amplifiers,

this would require the output of these amplifiers to be phase-locked to each other. The second

term, ϕ
′
(ω0) is the time delay of the central frequency through the system [15]. Again, this

term can be equalized between the A and B beams by adjusting the total path length in each

beamline, and will thus cancel each other in Eq. 12. This leaves only the difference in higher-

order dispersion terms that will result in the de-phasing of the A and B electric fields. These

terms are known as group delay dispersion (GDD, ϕ′′(ω0)), third-order dispersion (TOD,

ϕ′′′(ω0)), and fourth-order dispersion (FOD, ϕ′′′′(ω0)).

3. ARC Dispersion

We will now apply these results to the range of parameters we might expect to encounter on

the ARC beamline. A diagram of the dispersive elements in the ARC beamline is shown in

Fig. 3. This paper describes an older, simpler ARC dispersion management design than the

one that will be used on NIF. The newer design includes two additional dispersive elements

that lead to greater balance in the higher-order dispersion terms and will be described in

a future article [18]. We chose to describe the older design in this paper because it is both

conceptually simpler and gives worst-case higher-order dispersion values. While the specific

values of the older configuration are used in our examples, the result is generally true for any

system with similar design. In both cases the ARC aperture has a common short-pulse front-

end fiber laser, dubbed the master oscillator (MOR). This beam is split in two, and each half

is stretched through separate chirped fiber Bragg gratings (CFBG’s) and the dispersion of

each of these beams is then fine-tuned with separate pulse-width controllers (PWC’s). The

pulses then travel through a common amplifier chain in the NIF during which the beams

accumulate a moderate amount of material dispersion. Finally, the pulses propagate through

the ARC compressor chamber, which has a separate 4-grating compressor for each of the A

and B beams, and are then focused onto the target. Because the MOR, the CFBG’s, the

material, and the compressor gratings all apply fixed dispersions, only the PWC’s can be

used to adjust the dispersions of the two beams. The PWC’s are used to set the pulse-width

of each beam. The PWC design parameters are defined in Fig. 4 and the values are given in

Table 1. The various contributions to the fixed beamline dispersion for the two beams are

given in Table 2. If only the residual GDD component of the the dispersion is included and

if a pulse is Gaussian in time, the full-width half-maximum (FWHM) pulsewidth τGDD of a

non-transform-limited pulse is related to the FWHM width τTL of a transform-limited pulse

by

τGDD =

√
τ 4TL + (4 ·GDD · log 2)2

τTL

. (13)
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A plot of the pulse width τGDD as a function of the PWC separation L for beam A is shown

in Fig. 5.

4. Results

We will now compute the combined intensities for the A and B beams using Eq. 9. For these

calculations we use Gaussian pulses with a spectral intensity FWHM bandwidth of 2.2 nm

centered at wavelength λ0 = 1053 nm and a supergaussian filter with 5-nm bandwidth that

corresponds to the bandwidth of the compressor. The results of these intensity calculations

for three different pulse widths are shown in Fig. 6. Plots of the slowly varying cosine term

in Eq. 11 and the phase difference given in Eq. 12 are also given in Figs. 6(a)-(c). The

individual intensities for the A and B beams are given in Figs. 6(d)-(f) on the same scale

as the combined intensity. These results show that in all cases of interest for the ARC beam

the two halves of the beam are substantially in-phase over the length of the pulse despite

the difference in residual dispersion experienced by each beam. This can be seen by looking

at the values for cos(ϕA/2− ϕB/2) from Eq. 11(right axis, dotted curve) and ϕA − ϕB (left

axis, dashed curve), or by noticing that the peak intensity of the combined beam is ∼ 4

times the intensity of the individual beams. The structure that is evident in the plots for

the 5-ps pulse is a result of non-zero third-order dispersion values and disappears when the

expected lower residual values for the newer ARC dispersion management system are used.

This structure is mostly washed out by the time the beams are stretched to 10 ps.

A relevant question for system design is how much error is allowable when aligning the

compressors and PWC’s before the difference in dispersion values results in significant mod-

ulation of the combined beam. Because most of the energy is at the peak of the pulse,

a large phase difference that occurs at at the peak will cause a significant portion of the

beam’s energy to be out of phase. We can ask under what condition is the phase difference

∆ϕAB(t = 0) between A and B the closest to an odd multiple of π (see Eq. 12). To simplify

matters, we will look at the case in which only GDD is present. In this case, there exists an

analytic expression for the phase difference at t = 0 (the peak of a Gaussian pulse) between

two pulses with different GDD values:

∆ϕAB(t = 0) =
1

2

[
Arg

(
−iGDDA +

τ 2

4 log 2

)
− Arg

(
−iGDDB +

τ 2

4 log 2

)]
(14)

where Arg[. . .] is the argument for the given complex number and τ is the transform limited

FWHM of the intensity. By inspection of Fig. 8 it is clear that the greatest possible value for

∆ϕAB at t = 0 is π/2. It is also clear from inspection that this will occur when the two GDD

values are opposite in sign and much larger than τ 2. This can be achieved experimentally

by setting the PWC distance L for beam B (or A, but not both) to be greater than the

value for minimum pulse width, rather than shorter as has been done in the calculation thus
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far (see Table 1), to increase the pulse width. This will cause the GDD for B to have the

same magnitude but opposite sign of beam A. For this case, Eq. 14 can be evaluated with

τ = 740 and the values for GDDA and GDDB taken from Table 2 except with the sign of

GDDB reversed. For this particular situation, the sign of the TOD is also happens to be

reversed, but the sign of the FOD remains the same and the magnitudes of the TOD and

FOD remain approximately the same. Equation 14 predicts a phase difference of ∼ 1.497,

and the result calculated using the exact expression in Eq. 9 is shown in Fig. 7 and gives

∆ϕAB(t = 0) = 1.491, which agrees quite well with the analytic result. Note that the two

beams are not only out of phase at t=0, but also at several other values across the pulse.

Also notice that the approximation used in deriving Eq. 11 is valid in this situation: no

approximations were made in calculating the intensity field in Fig. 7a but the minima in the

intensity still occur where cos(ϕA/2− ϕB/2) is zero. These results highlight the importance

of both beams having the same sign of GDD to eliminate potential beating between in the

combined pulse.

It would be desirable to do a similar analysis to determine the extent to which TOD

mismatch leads to de-phasing of the two beams. Unfortunately an analytic solution similar

to Eq. 14 does not exist when TOD is included. For this reason, we numerically modeled a

representative sample of pulses with varying degrees of TOD mismatch and with the GDD

and FOD terms equal to zero. These results are shown in Fig. 9. As can be seen, oscillations

that result from the presence of TOD in the pulse, as we have already seen in Fig. 6e and

similar to those calculated in other papers [17], have a larger effect on beam shape over

the full range of expected TOD variation than any de-phasing between the two beams. We

can therefore safely say that TOD should be minimized to limit intensity oscillations, but

that the small differences in TOD we might expect to see will not significantly contribute to

detrimental de-phasing effects between the two beams. A similar conclusion, that the small

differences in FOD that might be expected between the two beams will not be a problem,

can be reached by a similar analysis.

5. Conclusions

The results presented here indicate that dispersion imbalance between the two halves of

the ARC beamline will not be the limiting factor in phasing the ARC aperture. This is

a somewhat surprising result given the many electric-field oscillations that occur over the

duration of the pulselengths analyzed in this paper. For example, in a 10-ps pulse the electric

field will go through over 35,000 oscillations, and the phase difference between the two pulses

is much less than π over this full range. For the actual laser system great care will still need

to be taken to ensure that the two beams are phase-locked coming out of the front end

amplifiers, and that the piston phase between the two beams only deviates slightly from an
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odd multiple of π while propagating through the laser chain. Given the many challenges and

restrictions involved in designing a phased-aperture high-power laser, it is good to know that

dispersion imbalance will not be a significant one.

6. Appendix

If one wishes to plot the phase of the calculated electric field, rather than a difference in

phases as we have done in Eq. 12, some care must be taken. One typically uses a fast Fourier

transform (FFT) algorithm to take the DFT. If the beam is centered in the array which will

be transformed, then upon taking the FFT, a linear phase term must be added to account for

offset of the pulse from zero, corresponding to the fact that F [f(t− t0)] = exp[−iωt0]·F [f(t)].

In general, if NDATA is the number of points in the data array, and NFFT is the number

of points used to take the FFT (the array can be padded to give better resolution in the

transform space), the output of the FFT must be multiplied by a correction array CORR

given by:

CORR[j] = exp[πi · NDATA · j/NFFT] (15)

where j is the index of the array. This correction was not necessary for any of the plots in

this paper, since this term cancels when the difference is taken between two phases, as in

Eq. 12, but we found it useful during the analysis of these effects to plot the temporal phase

of a single beam in order to improve our intuition about these effects.
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Table 1. Pulse-width Controller Parameters

λ0 lines/mm α β L τGDD

nm degrees degrees mm ps

A 1053 1779.4 64.31 76.5706 66-121 50 - 0.741

B 1053 1780 66.17 73.5488 193.9-275.7 50 - 0.741
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Table 2. Dispersion parameters for 740-fs, 5-ps, and 10-ps pulses.

GDD (ps2/rad) TOD (ps3/rad) FOD (ps4/rad)

A B A B A B

MOR -2.145 0.224

CFBG 321.405 -6.064 -0.083

PWC 10ps -26.7139 -42.3632 1.5587 1.6631 -0.1514 -0.1087

PWC 5ps -28.0738 -43.6860 1.6381 1.7150 -0.1592 -0.1121

PWC 0.741ps -29.3852 -45.0252 1.7146 1.7676 -0.1666 -0.1155

Material 0.229 0.05298

Compressor -290.1 -274.46 4.4366 4.0396 -0.1151 -0.1008

Total 10ps 2.6700 2.6637 0.2083 -0.0843 -0.3495 -0.2925

Total 5ps 1.3100 1.3409 0.2877 -0.0324 -0.3572 -0.29659

Total 0.740ps -0.0014 0.0017 0.3642 0.0202 -0.3647 -0.2994
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